These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disease Phenotype of Virus-Infected Helminthosporium victoriae Is Independent of Overexpression of the Cellular Alcohol Oxidase/RNA-Binding Protein Hv-p68.
    Author: Zhao T, Havens WM, Ghabrial SA.
    Journal: Phytopathology; 2006 Mar; 96(3):326-32. PubMed ID: 18944449.
    Abstract:
    ABSTRACT The cellular protein Hv-p68 is a novel alcohol oxidase/RNA-binding protein that is overexpressed in virus-infected isolates of the plant-pathogenic fungus Helminthosporium victoriae (teleomorph: Cochliobolus victoriae). Overproduction of Hv-p68 has been hypothesized to lead to the accumulation of toxic aldehydes and to induce the disease phenotype associated with the virus-infected isolates. We overexpressed the Hv-p68 gene in virus-free isolates and evaluated the morphology of the resulting colonies. We cloned and sequenced the Hv-p68 genomic DNA, which contains five introns and the complete Hv-p68 coding sequence. Vectors for overexpression of the Hv-p68 gene were constructed with either Hv-p68 cDNA or the intron-containing Hv-p68 genomic DNA. Expression of Hv-p68 was significantly higher if the genomic sequence was used for transformation than if the cDNA sequence was used. The virus-free fungal transformants that overexpressed Hv-p68 gene did not exhibit the disease phenotype. In contrast, these transformants showed enhanced growth rates when compared with the nontransformed and empty vector controls. Interestingly, overexpression of Hv-p68 in a fungal isolate infected with both the totivirus Helminthosporium victoriae 190S virus (Hv190SV) and the chrysovirus Helminthosporium victoriae 145S virus (Hv145S) showed enhanced accumulation of the Hv145SV double-stranded (ds)RNA, but not of the Hv190SV. These results are consistent with an earlier report that Hv-p68 co-purified with viral dsRNA, mainly that of the Hv145SV. Elucidation of the role of Hv-p68 in disease induction is important for an understanding of host-virus interactions in this fungus-virus system.
    [Abstract] [Full Text] [Related] [New Search]