These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel diol-derivative of chalcone produced by bioconversion, 3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one, activates PKA/MEK/ERK signaling and antagonizes Abeta-inhibition of the cascade in cultured rat CNS neurons.
    Author: Al Rahim M, Nakajima A, Misawa N, Shindo K, Adachi K, Shizuri Y, Ohizumi Y, Yamakuni T.
    Journal: Eur J Pharmacol; 2008 Dec 14; 600(1-3):10-7. PubMed ID: 18948095.
    Abstract:
    Chalcone compounds have been widely studied for their anti-inflammatory, anti-pyretic, anti-invasive and anti-proliferative activities in various cell lines. However, their effects on the central nervous system (CNS) are still largely unexplored. We have recently developed a bioconversion system using a recombinant Escherichia coli that enables us to produce chemical compounds that are naturally rare and usually difficult to chemically synthesize. One such compound is 3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one, a novel chalcone-diol. Here we show, for the first time, that the chalcone-diol enhanced the phosphorylation of extracellular signal-regulated kinase (ERK) in a time- and concentration-dependent manner in cultured cortical neurons. Also, this chalcone-diol increased intracellular cyclic AMP (cAMP) concentration, thereby enhancing phosphorylation of ERK and cAMP-response element-binding protein (CREB), and CRE-mediated transcription via the cAMP-dependent protein kinase (PKA)/mitogen-activated protein kinase/ERK kinase (MEK) pathway in cultured rat hippocampal neurons. Recent studies have demonstrated that PKA/CREB-dependent signaling, which is required for long-term potentiation, is inhibited by sublethal concentrations of amyloid beta-peptide (Abeta) in cultured hippocampal neurons. After treatment with the chalcone-diol at 50 muM prior to treatment with a sublethal concentration of Abeta(1-42), the Abeta(1-42)-induced inhibition of phosphorylation of PKA substrates and CREB was prevented in cultured hippocampal neurons, indicating the potential for protection against the Abeta-induced impairment of PKA/CREB signaling observed in Alzheimer's disease. Therefore, these results suggest that our present study provides a new approach for discovering novel lead compounds for the treatment of neurodegenerative CNS diseases associated with impaired PKA/CREB signaling, including Alzheimer's disease.
    [Abstract] [Full Text] [Related] [New Search]