These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selection of human embryos for transfer by Bayesian classifiers. Author: Morales DA, Bengoetxea E, Larrañaga P. Journal: Comput Biol Med; 2008; 38(11-12):1177-86. PubMed ID: 18951123. Abstract: In this work we approach by Bayesian classifiers the selection of human embryos from images. This problem consists of choosing the embryos to be transferred in human-assisted reproduction treatments, which Bayesian classifiers address as a supervised classification problem. Different Bayesian classifiers capable of taking into account diverse dependencies between variables of this problem are tested in order to analyse their performance and validity for building a potential decision support system. The analysis by receiver operating characteristic (ROC) proves that the Bayesian classifiers presented in this paper are an appropriated and robust approach for this aim. From the Bayesian classifiers tested, the tree augmented naive Bayes, k-dependence Bayesian and naive Bayes classifiers showed to perform almost as well as the semi naive Bayes and selective naive Bayes classifiers.[Abstract] [Full Text] [Related] [New Search]