These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Climatic effects on the nasal complex: a CT imaging, comparative anatomical, and morphometric investigation of Macaca mulatta and Macaca fascicularis.
    Author: Márquez S, Laitman JT.
    Journal: Anat Rec (Hoboken); 2008 Nov; 291(11):1420-45. PubMed ID: 18951486.
    Abstract:
    Previous studies exploring the effects of climate on the nasal region have largely focused on external craniofacial linear parameters, using dry crania of modern human populations. This investigation augments traditional craniofacial morphometrics with internal linear and volumetric measures of the anatomic units comprising the nasal complex (i.e., internal nasal cavity depth, maxillary sinus volumes). The study focuses on macaques (i.e., Macaca mulatta and Macaca fascicularis) living at high and low altitudes, rather than on humans, since the short residency of migratory human populations may preclude using them as reliable models to test the long-term relationship of climate to nasal morphology. It is hypothesized that there will be significant differences in nasal complex morphology among macaques inhabiting different climates. This study integrated three different approaches: CT imaging, comparative anatomy, and morphometrics-in an effort to better understand the morphological structure and adaptive nature of the nasal complex. Results showed statistically significant differences when subsets of splanchnocranial and neurocranial variables were regressed against total maxillary sinus volume for particular taxa. For example, basion-hormion was significant for M. fascicularis, whereas choanal dimensions were significant only for M. mulatta. Both taxa revealed strong correlation between sinus volume and prosthion to staphylion distance, which essentially represents the length of the nasal cavity floor-and is by extension an indicator of the air conditioning capacity of the nasal region. These results clearly show that climatic effects play a major role in shaping the anatomy of the nasal complex in closely related species. The major influence upon these differing structures appears to be related to respiratory-related adaptations subserving differing climatic factors. In addition, the interdependence of the paranasal sinuses with other parts of the complex strongly indicates a functional role for them in nasal complex/upper respiratory functions.
    [Abstract] [Full Text] [Related] [New Search]