These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving horizontal plane locomotion via leg angle control. Author: Wickramasuriya A, Schmitt J. Journal: J Theor Biol; 2009 Feb 07; 256(3):414-27. PubMed ID: 18951907. Abstract: The lateral leg spring model has been shown to accurately represent horizontal plane locomotion characteristics of sprawled posture insects such as the cockroach Blaberus discoidalis. While passively stable periodic gaits result from employing a constant leg touch-down angle for this model, utilizing a similar protocol for a point mass model of locomotion in three dimensions produces only unstable periodic gaits. In this work, we return to the horizontal plane model and develop a simple control law that prescribes variations in the leg touch-down angle in response to external perturbations. The resulting control law applies control once per stance phase, at the instant of leg touch-down, and depends upon previous leg angles defined in the body reference frame. As a result, our control action is consistent with the neural activity evidenced by B. discoidalis during locomotion over flat and rough terrain, and utilizes variables easily sensed by insect mechanoreceptors. Application of control in the lateral leg spring model is shown to improve stability of periodic gaits, enable stabilization of previously unstable periodic gaits, and maintain or improve the basin of stability of periodic gaits. The magnitude of leg touch-down angle variations utilized during stabilization appear consistent with the natural variations evidenced by single legs during locomotion over flat terrain.[Abstract] [Full Text] [Related] [New Search]