These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sulforaphane suppresses TNF-alpha-mediated activation of NF-kappaB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Author: Moon DO, Kim MO, Kang SH, Choi YH, Kim GY. Journal: Cancer Lett; 2009 Feb 08; 274(1):132-42. PubMed ID: 18952368. Abstract: Sulforaphane (SFN) is a biologically active compound extracted from cruciferous vegetables, and possessing potent anti-cancer and anti-inflammatory activities. Here, we show that tumor necrosis factor-alpha (TNF-alpha), in combination with a sub-toxic dose of SFN, significantly triggered apoptosis in TNF-alpha-resistant leukemia cells (THP-1, HL60, U937, and K562), which was associated with caspase activity and poly (ADP-ribose)-polymerase cleavage. We also report that SFN non-specifically inhibited TNF-alpha-induced NF-kappaB activation through the inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, and p65 nuclear translocation. This inhibition correlated with the suppression of NF-kappaB-dependent genes involved in anti-apoptosis (IAP-1, IAP-2, XIAP, Bcl-2, and Bcl-xL), cell proliferation (c-Myc, COX-2, and cyclin D1), and metastasis (VEGF and MMP-9). These effects suggest that SFN inhibits TNF-alpha-induced NF-kappaB activation through the suppression of IkappaBalpha degradation, leading to reduced expression of NF-kappaB-regulated gene products. Combined treatment with SFN and TNF-alpha was also accompanied by the generation of reactive oxygen species (ROS). Pre-treatment with N-acetyl-l-cysteine significantly attenuated the combined treatment-induced ROS generation and caspase-3-dependent apoptosis, implying the involvement of ROS in this type of cell death. In conclusion, the results of the present study indicate that SFN suppresses TNF-alpha-induced NF-kappaB activity and induces apoptosis through activation of ROS-dependent caspase-3.[Abstract] [Full Text] [Related] [New Search]