These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design, synthesis, and pharmacological evaluation of N-bicyclo-5-chloro-1H-indole-2-carboxamide derivatives as potent glycogen phosphorylase inhibitors.
    Author: Onda K, Shiraki R, Ogiyama T, Yokoyama K, Momose K, Katayama N, Orita M, Yamaguchi T, Furutani M, Hamada N, Takeuchi M, Okada M, Ohta M, Tsukamoto S.
    Journal: Bioorg Med Chem; 2008 Dec 01; 16(23):10001-12. PubMed ID: 18952447.
    Abstract:
    As a result of the various N-bicyclo-5-chloro-1H-indole-2-carboxamide derivatives with a hydroxy moiety synthesized in an effort to discover novel glycogen phosphorylase (GP) inhibitors, 5-chloro-N-(5-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-indole-2-carboxamide (5b) was found to have potent inhibitory activity. The introduction of fluorine atoms both at a position adjacent to the hydroxy group and in the central benzene moiety lead to the optically active derivative 5-chloro-N-[(5R)-1,3,6,6-tetrafluoro-5-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl]-1H-indole-2-carboxamide (25e(alpha), which was the most potent compound in this series (IC(50)=0.020microM). This compound inhibited glucagon-induced glucose output in cultured primary hepatocytes with an IC(50) value of 0.69microM, and showed oral hypoglycemic activity in diabetic db/db mice at 10mg/kg. Compound 25e(alpha) also had an excellent pharmacokinetic profile, with high oral bioavailability and a long plasma half-life, in male SD rats. The binding mode of 25e(alpha) to this molecule and the role of fluorine atoms in that binding were speculated in an enzyme docking study.
    [Abstract] [Full Text] [Related] [New Search]