These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions.
    Author: Jordan DB, Braker JD.
    Journal: Appl Biochem Biotechnol; 2009 May; 155(1-3):330-46. PubMed ID: 18953511.
    Abstract:
    Beta-D-Xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D: -xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabinofuranoside (4NPA), and 1,4-beta-D-xylobiose (X2) was determined on and off (k (non)) the enzyme at pH 5.3, which lies in the pH-independent region for k (cat) and k (non). Rate enhancements (k (cat)/k (non)) for 4NPX, 4NPA, and X2 are 4.3 x 10(11), 2.4 x 10(9), and 3.7 x 10(12), respectively, at 25 degrees C and increase with decreasing temperature. Relative parameters k (cat) (4NPX)/k (cat) (4NPA), k (cat) (4NPX)/k (cat) (X2), and (k (cat)/K (m))(4NPX)/(k (cat)/K (m))(X2) increase and (k (cat)/K (m))(4NPX)/(k (cat)/K (m))(4NPA), (1/K (m))(4NPX)/(1/K (m))(4NPA), and (1/K (m))(4NPX)/(1/K (m))(X2) decrease with increasing temperature.
    [Abstract] [Full Text] [Related] [New Search]