These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes).
    Author: Wang SJ, Chou SH, Kuo YC, Chou SS, Tzeng WF, Leu JY, Huang RF, Liew YF.
    Journal: Acta Pharmacol Sin; 2008 Nov; 29(11):1289-95. PubMed ID: 18954522.
    Abstract:
    AIM: Excessive glutamate release has been proposed to be involved in the pathogenesis of several neurological diseases. In this study, we investigated the effect of HDT-1 (3, 4, 4a, 5, 8, 8a-hexahydro-6,7-dimethyl-4a-(phenylsulfonyl)- 2-tosylisoquinolin-1(2H)-one), a novel synthetic compound, on glutamate release in rat cerebrocortical nerve terminals and explored the possible mechanism. METHODS: The release of glutamate was evoked by the K+ channel blocker 4-aminopyridine (4-AP) or the high external [K+] and measured by one-line enzyme-coupled fluorometric assay. We also determined the loci at which HDT-1 impinges on cerebrocortical nerve terminals by using membrane potentialsensitive dye to assay nerve terminal excitability and depolarization, and Ca2+ indicator Fura-2 to monitor Ca2+ influx. RESULTS: HDT-1 inhibited the release of glutamate evoked by 4-AP and KCl in a concentration-dependent manner. HDT-1 did not alter the resting synaptosomal membrane potential or 4-APevoked depolarization. Examination of the effect of HDT-1 on cytosolic [Ca2+] revealed that the diminution of glutamate release could be attributed to reduction in voltage-dependent Ca2+ influx. Consistent with this, the HDT-1-mediated inhibition of glutamate release was significantly prevented in synaptosomes pretreated with the N- and P/Q-type Ca2+ channel blocker omega-conotoxin MVIIC. CONCLUSION: In rat cerebrocortical nerve terminals, HDT-1 inhibits glutamate release through a reduction of voltage-dependent Ca2+ channel activity and subsequent decrease of Ca2+ influx into nerve terminals, rather than any upstream effect on nerve terminal excitability.
    [Abstract] [Full Text] [Related] [New Search]