These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modeling residual force enhancement with generic cross-bridge models. Author: Walcott S, Herzog W. Journal: Math Biosci; 2008 Dec; 216(2):172-86. PubMed ID: 18955069. Abstract: The interaction of actin and myosin through cross-bridges explains much of muscle behavior. However, some properties of muscle, such as residual force enhancement, cannot be explained by current cross-bridge models. There is ongoing debate whether conceptual cross-bridge models, as pioneered by Huxley (A.F. Huxley, Muscle structure and theories of contraction, Prog. Biophys. Biophys. Chem. 7 (1957) 255) could, if suitably modified, fit experimental data showing residual force enhancement. Here we prove that there are only two ways to explain residual force enhancement with these 'traditional' cross-bridge models: the first requires cross-bridges to become stuck on actin (the stuck cross-bridge model) while the second requires that cross-bridges that are pulled off beyond a critical strain enter a 'new' unbound state that leads to a new force-producing cycle (the multi-cycle model). Stuck cross-bridge models cannot fit the velocity and stretch amplitude dependence of residual force enhancement, while the multi-cycle models can. The results of this theoretical analysis demonstrate that current kinetic models of cross-bridge action cannot explain the experimentally observed residual force enhancement. Either cross-bridges in the force-enhanced state follow a different kinetic cycle than cross-bridges in a 'normal' force state, or the assumptions underlying traditional cross-bridge models must be violated during experiments that show residual force enhancement.[Abstract] [Full Text] [Related] [New Search]