These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conventional and narrow bore short capillary columns with cyclodextrin derivatives as chiral selectors to speed-up enantioselective gas chromatography and enantioselective gas chromatography-mass spectrometry analyses. Author: Bicchi C, Liberto E, Cagliero C, Cordero C, Sgorbini B, Rubiolo P. Journal: J Chromatogr A; 2008 Nov 28; 1212(1-2):114-23. PubMed ID: 18962648. Abstract: The analysis of complex real-world samples of vegetable origin requires rapid and accurate routine methods, enabling laboratories to increase sample throughput and productivity while reducing analysis costs. This study examines shortening enantioselective-GC (ES-GC) analysis time following the approaches used in fast GC. ES-GC separations are due to a weak enantiomer-CD host-guest interaction and the separation is thermodynamically driven and strongly influenced by temperature. As a consequence, fast temperature rates can interfere with enantiomeric discrimination; thus the use of short and/or narrow bore columns is a possible approach to speeding-up ES-GC analyses. The performance of ES-GC with a conventional inner diameter (I.D.) column (25 m length x 0.25 mm I.D., 0.15 microm and 0.25 microm d(f)) coated with 30% of 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-beta-cyclodextrin in PS-086 is compared to those of conventional I.D. short column (5m length x 0.25 mm I.D., 0.15 microm d(f)) and of different length narrow bore columns (1, 2, 5 and 10 m long x 0.10 mm I.D., 0.10 microm d(f)) in analysing racemate standards of pesticides and in the flavour and fragrance field and real-world-samples. Short conventional I.D. columns gave shorter analysis time and comparable or lower resolutions with the racemate standards, depending mainly on analyte volatility. Narrow-bore columns were tested under different analysis conditions; they provided shorter analysis time and resolutions comparable to those of conventional I.D. ES columns. The narrow-bore columns offering the most effective compromise between separation efficiency and analysis time are the 5 and 2m columns; in combination with mass spectrometry as detector, applied to lavender and bergamot essential oil analyses, these reduced analysis time by a factor of at least three while separation of chiral markers remained unaltered.[Abstract] [Full Text] [Related] [New Search]