These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectrophotometric determination of tantalum in ores and mill products with brilliant green after separation by methyl isobutyl ketone extraction of tantalum fluoride. Author: Donaldson EM. Journal: Talanta; 1983 Jul; 30(7):497-504. PubMed ID: 18963405. Abstract: A method for determining ~ 0.001% or more of tantalum in ores and mill products is described. After fusion of the sample with sodium carbonate, the cooled melt is dissolved in dilute sulphuric-hydrofluoric acid mixture and tantalum is separated from niobium and other matrix elements by methyl isobutyl ketone extraction of its fluoride from 1M hydrofluoric acid-0.5M sulphuric acid. The extract is washed with a hydrofluoric-sulphuric acid solution of the same composition to remove co-extracted niobium, and tantalum is stripped with dilute hydrogen peroxide. This solution is acidified with sulphuric and hydrofluoric acids and evaporated to dryness, and the residue is dissolved in oxalic-hydrofluoric acid solution. Tantalum is ultimately determined spectrophotometrically after extraction of the blue hexafluorotantalate-Brilliant Green ion-association complex into benzene from a 0.05M sulphuric acid-0.5M hydrofluoric acid-0.2M oxalic acid medium. The apparent molar absorptivity of the complex is 1.19 x 10(4) l.mole(-1).mm(-1) at 640 nm, the wavelength of maximum absorption. Common ions, including iron, aluminium, manganese, zirconium, titanium, molybdenum, tungsten, vanadium, tin, arsenic and antimony, do not interfere. Results obtained by this method are compared with those obtained by an X-ray fluorescence method.[Abstract] [Full Text] [Related] [New Search]