These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The long-term effect of angiotensin II type 1a receptor deficiency on hypercholesterolemia-induced atherosclerosis.
    Author: Eto H, Miyata M, Shirasawa T, Akasaki Y, Hamada N, Nagaki A, Orihara K, Biro S, Tei C.
    Journal: Hypertens Res; 2008 Aug; 31(8):1631-42. PubMed ID: 18971539.
    Abstract:
    Angiotensin II type 1 receptor may contribute to atherogenesis by facilitating the proliferative and inflammatory response to hypercholesterolemia. In the present study, we investigated the long-term effect of angiotensin II type 1a receptor (AT1a) deficiency on hypercholesterolemia-induced atherosclerosis by the use of AT1a-knockout (AT1a-KO) mice and apolipoprotein E-knockout (apoE-KO) mice. AT1a-KO were crossed with apoE-KO, generating double-knockout (D-KO) mice. Mice were fed a standard diet and analyzed at 25- or 60-weeks-old. The quantification of atherosclerotic volume in the aortic root revealed that the atherosclerotic lesions of D-KO mice were significantly smaller than those of apoE-KO mice at 25-week-old (0.81+/-0.16 mm2 vs. 1.05+/-0.21 mm2, p<0.001) and at 60-week-old (0.89+/-0.11 mm2 vs. 2.44+/-0.28 mm2, p<0.001). Surprisingly, there was no significant difference in atherosclerotic lesion size of D-KO mice at 25- and 60-week-old, suggesting that AT1a deficiency completely protected against the age-related progression of atherosclerosis. The amounts of collagen and elastin, the expression of p22phox, serum amyloid P (SAP), matrix metalloproteinase (MMP)-2, and MMP-9, and the number of apoptotic cells of D-KO mice were lower than those of apoE-KO mice. Furthermore, we confirmed that the expression of procollagen alpha1(I), procollagen alpha1(III), tropoelastin, p22phox, SAP, MMP-2, and MMP-9 decreased in cultured vascular smooth muscle cells from D-KO mice compared with those of apoE-KO mice. In conclusion, AT1a deficiency reduces atherosclerotic lesion size of apoE-KO mice and protects against the age-related progression of atherosclerosis. Reduction of oxidative stress, apoptosis, and MMP expression in atherosclerotic lesions by AT1a deficiency may contribute to plaque size.
    [Abstract] [Full Text] [Related] [New Search]