These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells.
    Author: Ye P, Nakamura Y, Lalli E, Rainey WE.
    Journal: Endocrinology; 2009 Mar; 150(3):1303-9. PubMed ID: 18974272.
    Abstract:
    Steroidogenic factor-1 (SF-1/Ad4BP/NR5A1) plays a major role in regulating steroidogenic enzymes. We have previously shown that SF-1 inhibits aldosterone synthase (CYP11B2) reporter gene activity. Herein, we used the H295R/TR/SF-1 adrenal cells that increase SF-1 in a doxycycline-dependent fashion. Cells were incubated with or without doxycycline to induce SF-1 and then treated with angiotensin II (Ang II). Aldosterone was measured by immunoassay. SF-1 mRNA was silenced by small interfering RNA (siRNA) by Nucleofector technology. mRNA levels were measured by real-time RT-PCR. Ang II treatment without doxycycline increased aldosterone production by 11.3-fold and CYP11B2 mRNA by 116-fold. Doxycycline treatment increased SF-1 mRNA levels by 3.7-fold and inhibited Ang II-induced aldosterone by 84%. Doxycycline treatment inhibited Ang II-stimulated CYP11B2 mRNA levels by 86%. Doxycycline decreased basal CYP11B2 promoter activity by 68%. Doxycycline inhibited Ang II stimulation by 85%. Ang II increased CYP21 mRNA expression by 4.6-fold, whereas doxycycline inhibited induction by 69%. In contrast, doxycycline treatment increased CYP11B1 mRNA by 1.7-fold in basal cells and increased Ang II induction by 3.6-fold. SF-1-specific siRNA significantly reduced SF-1 mRNA expression as compared with cells treated with control siRNA. SF-1 siRNA reversed doxycycline stimulation of CYP B1 and its inhibition of CYP11B2. However, in H295R/TR/SF-1 cells without doxycycline treatment, both CYP11B1 and CYP11B2 mRNAs were significantly decreased, suggesting that both enzymes require a minimal level of SF-1 for basal expression. In summary, SF-1 overexpression dramatically inhibited CYP11B2 expression and decreased aldosterone production. The opposing effects of SF-1 on CYP11B1 and CYP11B2 suggest that the regulation of SF-1 activity may play a role that determines the relative ability to produce mineralocorticoid and glucocorticoid.
    [Abstract] [Full Text] [Related] [New Search]