These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs.
    Author: Perez-Reyes E, Van Deusen AL, Vitko I.
    Journal: J Pharmacol Exp Ther; 2009 Feb; 328(2):621-7. PubMed ID: 18974361.
    Abstract:
    Antihypertensive drugs of the "calcium channel blocker" or "calcium antagonist" class have been used to establish the physiological role of L-type Ca(2+) channels in vascular smooth muscle. In contrast, there has been limited progress on the pharmacology T-type Ca(2+) channels. T-type channels play a role in cardiac pacemaking, aldosterone secretion, and renal hemodynamics, leading to the hypothesis that mixed T- and L-type blockers may have therapeutic advantages over selective L-type blockers. The goal of this study was to identify compounds that block the Ca(v)3.2 T-type channel with high affinity, focusing on two classes of compounds: phenylalkylamines (e.g., mibefradil) and dihydropyridines (e.g., efonidipine). Compounds were tested using a validated Ca(2+) influx assay into a cell line expressing recombinant Ca(v)3.2 channels. This study identified four clinically approved antihypertensive drugs (efonidipine, felodipine, isradipine, and nitrendipine) as potent T-channel blockers (IC(50) < 3 microM). In contrast, other widely prescribed dihydropyridines, such as amlodipine and nifedipine, were 10-fold less potent, making them a more appropriate choice in research studies on the role of L-type currents. In summary, the present results support the notion that many available antihypertensive drugs block a substantial fraction of T-current at therapeutically relevant concentrations, contributing to their mechanism of action.
    [Abstract] [Full Text] [Related] [New Search]