These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison. Author: Pappas E, Maris TG, Zacharopoulou F, Papadakis A, Manolopoulos S, Green S, Wojnecki C. Journal: Med Phys; 2008 Oct; 35(10):4640-8. PubMed ID: 18975710. Abstract: Small photon fields are increasingly used in modern radiotherapy and especially in IMRT and SRS/SRT treatments. The uncertainties related to small field profile measurements can introduce significant systematic errors to the overall treatment process. These measurements are challenging mainly due to the absence of charged particle equilibrium conditions, detector size and composition effects, and positioning problems. In this work four different dosimetric methods have been used to measure the profiles of three small 6 MV circular fields having diameters of 7.5, 15.0, and 30.0 mm: a small sensitive volume air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and vinyl-pyrrolidone based polymer gel dosimeter. The results of this work support the validity of previous findings, suggesting that (a) air ion chambers are not suitable for small field dosimetry since they result in penumbra broadening and require significant corrections due to severe charged particle transport alterations; (b) diamond detectors provide high resolution and rather accurate small field profile measurements, as long as positioning problems can be addressed and the necessary dose rate corrections are correctly applied; and (c) the novel silicon-diode array (DOSI) used in this study seems to be adequate for small field profile measurements overcoming positioning problems. Polymer gel data were assumed as reference data to which the other measurement data were compared both qualitatively and quantitatively using the gamma-index concept. Polymer gels are both phantom and dosimeter, hence there are no beam perturbation effects. In addition, polymer gels are tissue equivalent and can provide high-spatial density and high-spatial resolution measurements without positioning problems, which makes them useful for small field dosimetry measurements. This work emphasizes the need to perform beam profile measurements of small fields (for acceptance, commissioning, treatment planning systems data feed, and periodic quality assurance purposes) using more than one dosimetric method. The authors believe this to be a safe way towards the reduction of the overall uncertainty related to SRS/SRT treatments.[Abstract] [Full Text] [Related] [New Search]