These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry monitoring of anthocyanins in extracts from Arabidopsis thaliana leaves. Author: Marczak L, Kachlicki P, Koźniewski P, Skirycz A, Krajewski P, Stobiecki M. Journal: Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3949-56. PubMed ID: 18980256. Abstract: Anthocyanins are secondary plant metabolites ubiquitous in the plant kingdom. They have different biological activities, so monitoring their content in plant tissue or in feed/food derived from plants may be an important task in different projects from various fields of molecular biology and biotechnology. Profiling of secondary metabolites with high-performance liquid chromatography/mass spectrometry (HPLC/MS) systems is time-consuming, especially when many samples have to be checked within a defined time frame with a reasonable number of repetitions according to the metabolomic standards. Even application of the advanced ultra-performance liquid chromatography (UPLC)/MS or equivalent systems would require a long time for analysis of numerous samples. We demonstrate the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the assessment of level (concentration) of anthocyanins in leaf tissues of four Arabidopsis thaliana ecotypes grown at normal (20 degrees C/16 degrees C day/night) and decreased (4 degrees C) temperature. The quantitative results were obtained for anthocyanins with MALDI-TOF MS using ferulic acid as a matrix. The amounts of anthocyanins in leaves of A. thaliana varied from 0.3-2.5 microg per gram of leaves for ecotypes Col-0 and C24, respectively, and contents of these markedly increased in plants grown in the cold. The applied analytical method exhibited better repeatability of measurements than obtained with an HPLC/ion trap MS system.[Abstract] [Full Text] [Related] [New Search]