These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2.
    Author: Wang CY, Wen MS, Wang HW, Hsieh IC, Li Y, Liu PY, Lin FC, Liao JK.
    Journal: Circulation; 2008 Nov 18; 118(21):2166-73. PubMed ID: 18981300.
    Abstract:
    BACKGROUND: Alteration of the circadian rhythm and increased vascular senescence are linked to cardiovascular disease. Per2, a circadian gene, is known to regulate endothelium-dependent vasomotion. However, the mechanism by which Per2 affects endothelial function is unknown. We hypothesize that endothelial dysfunction in Per2 mutant (Per2(m/m)) mice is mediated in part by increased vascular senescence and impaired endothelial progenitor cell (EPC) function. METHODS AND RESULTS: Endothelial cells from Per2(m/m) mice exhibit increased protein kinase Akt signaling, greater senescence, and impaired vascular network formation and proliferation. Indeed, Per2(m/m) mice have impaired blood flow recovery and developed autoamputation of the distal limb when subjected to hind-limb ischemia. Furthermore, matrigel implantation into Per2(m/m) mice resulted in less neovascularization. Because EPCs contribute to angiogenesis, we studied the role of Per2 in these cells using bone marrow transplantation. Basal EPC levels were similar between wild-type and Per2(m/m) mice. However, compared with wild-type bone marrow transplantation mice, EPC mobilization was impaired in Per2(m/m) bone marrow transplantation mice in response to ischemia or VEGF stimulation. Bone marrow transplantation or infusion of wild-type EPC restored blood flow recovery and prevented autoamputation in Per2(m/m) mice. CONCLUSIONS: These findings indicate that mutation of Per2 causes Akt-dependent senescence and impairs ischemia-induced revascularization through the alteration of EPC function.
    [Abstract] [Full Text] [Related] [New Search]