These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of P-glycoprotein in L1210/VCR cells is associated with changes in several endoplasmic reticulum proteins that may be partially responsible for the lack of thapsigargin sensitivity.
    Author: Seres M, Poláková E, Krizanová O, Hudecová S, Klymenko SV, Breier A, Sulová Z.
    Journal: Gen Physiol Biophys; 2008 Sep; 27(3):211-21. PubMed ID: 18981537.
    Abstract:
    L1210/VCR cells, which express an abundant amount of P-glycoprotein (P-gp), were found to be resistant to thapsigargin--an inhibitor of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA). In the current paper, we have studied the possible differences among L1210 and L1210/VCR cells in expression of endoplasmic reticulum proteins involved in the regulation of calcium homeostasis and calcium-dependent processes. Amounts of mRNA encoding both calcium release channels (ryanodine receptor channels--RyR and IP3-receptor channels--IP3R) were found to be at similar levels in sensitive and resistant cells. However, mRNAs encoding IP3R1 or 2 were decreased in resistant cells cultivated in the presence of VCR (1.08 micromol/l), while mRNA encoding RyR remained unchanged. The amount of mRNA for SERCA2 was decreased in resistant cells when compared with sensitive cells. This decrease was more pronounced when resistant cells were cultivated in the presence of vincristine (VCR). Calnexin was found to be less expressed at the protein level in resistant as in sensitive cells. The level of mRNA encoding calnexin was decreased only when resistant cells were cultivated in the presence of VCR. Calnexin was found to be associated with immature P-gp in resistant cells. Thus, differences exist between sensitive and resistant cells in the expression of endoplasmic reticulum proteins involved in the control of intracellular calcium homeostasis or calcium-dependent processes. These changes may be at least partially responsible for the lack of sensitivity of resistant cells to thapsigargin.
    [Abstract] [Full Text] [Related] [New Search]