These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NRP/B mutations impair Nrf2-dependent NQO1 induction in human primary brain tumors. Author: Seng S, Avraham HK, Birrane G, Jiang S, Li H, Katz G, Bass CE, Zagozdzon R, Avraham S. Journal: Oncogene; 2009 Jan 22; 28(3):378-89. PubMed ID: 18981988. Abstract: Brain tumors are associated with genetic alterations of oncogenes and tumor suppressor genes. Accumulation of reactive oxygen species (ROS) in cells leads to oxidative stress-induced damage, resulting in tumorigenesis. Here, we showed that the nuclear matrix protein nuclear restricted protein in brain (NRP/B) was colocalized and interacted with NF-E2-related factor 2 (Nrf2). During oxidative stress response, NRP/B expression and its interaction with Nrf2 were upregulated in SH-SY5Y cells. Association of NRP/B with Nrf2 was crucial for NAD(P)H:quinone oxidoreductase 1 (NQO1) expression. NRP/B was localized predominantly in the nucleus of normal brain cells, whereas in primary brain tumors NRP/B was almost exclusively contained in the cytoplasm. In addition, unlike wild-type NRP/B, the expression of NRP/B mutants isolated from primary brain tumors was found in the cytoplasm, and these mutants failed to induce Nrf2-dependent NQO1 transcription. Thus, NRP/B mutations and their altered localization resulted in changes in NRP/B function and deregulation of Nrf2-dependent NQO1 activation in brain tumors. This study provides insights into the mechanism by which the NRP/B modulates Nrf2-dependent NQO1 induction in cellular protection against ROS in brain tumors.[Abstract] [Full Text] [Related] [New Search]