These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Caged quantum dots. Author: Han G, Mokari T, Ajo-Franklin C, Cohen BE. Journal: J Am Chem Soc; 2008 Nov 26; 130(47):15811-3. PubMed ID: 18983148. Abstract: Photoactivatable organic fluorophores and fluorescent proteins have been widely adopted for cellular imaging and have been critical for increasing temporal and spatial resolution, as well as for the development of superresolution microscopy techniques. At the same time, semiconducting nanocrystal quantum dots (QDs) have shown superior brightness and photostability compared to both organic fluorophores and proteins. As part of our efforts to develop nanoparticles with novel optical properties, we have synthesized caged quantum dots, which are nonluminescent under typical microscopic illumination but can be activated with stronger pulses of UV light. We show that ortho-nitrobenzyl groups efficiently quench QDs of different compositions and emissions and can be released from the nanoparticle surface with UV light, both in solution and in live cells. This caging is dependent on the emission of the QD, but it is effective through the visible spectrum into the nIR, offering a large array of new colors for photoactivatable probes. Like organic and protein-based photoactivatable probes, caged QDs can confer increased spatial and temporal resolution, with the added brightness and photostability of QDs.[Abstract] [Full Text] [Related] [New Search]