These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Non-opioid antinociception produced by brain stem injections of improgan: significance of local, but not cross-regional, cannabinoid mechanisms.
    Author: Hough LB, Svokos K, Nalwalk JW.
    Journal: Brain Res; 2009 Jan 09; 1247():62-70. PubMed ID: 18983834.
    Abstract:
    Improgan, a cimetidine derivative which lacks activity at known histamine, opioid or cannabinoid receptors, acts by an unknown mechanism in the periaqueductal gray (PAG) and raphe magnus (RM) to stimulate descending, analgesic circuits. These circuits may utilize cannabinoid mechanisms. To characterize further the nature of these circuits, the effects of intracerebral (i.c.) microinjections of rimonabant (a CB(1) receptor inverse agonist) were studied on antinociceptive responses following i.c. microinjections of improgan and the cannabinoid agonist WIN 55,212 (WIN) in rats. Separate intra-RM injections of improgan (30 microg) and WIN (8 microg) produced near-maximal antinociception on both the hot plate (HP) and tail flick (TF) nociceptive tests. Pretreatment with intra-RM rimonabant (20 microg) antagonized the antinociception produced by both intra-RM improgan and intra-RM WIN, but had no effects when given alone. Similar studies with improgan demonstrated rimonabant-sensitive sites within the dorsal and ventrolateral PAG. However, intra-RM pretreatment with rimonabant had no effect on antinociceptive responses following intra-PAG improgan. These studies show that improgan activates pain-relieving mechanisms in the PAG and the RM, both of which may utilize local cannabinoid mechanisms.
    [Abstract] [Full Text] [Related] [New Search]