These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chronic high-NaCl intake prolongs the cardiorenal responses to central N/OFQ and produces regional changes in the endogenous brain NOP receptor system. Author: Wainford RD, Kapusta DR. Journal: Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R280-8. PubMed ID: 18987291. Abstract: Intracerebroventricular nociceptin/orphanin FQ (N/OFQ) produces cardiovascular depressor, diuretic, and renal sympathoinhibitory responses in conscious rats. These studies examined how a chronic high-NaCl intake alters these peptide-evoked responses and the activity of the endogenous central N/OFQ peptide (NOP) receptor system. In normotensive Sprague-Dawley rats fed a chronic (3-wk) high (8%)-NaCl diet, intracerebroventricular N/OFQ (5.5 nmol) produced prolonged bradycardic, hypotensive, and diuretic responses but failed to suppress renal sympathetic nerve activity. In a separate group of rats maintained on a high-NaCl diet, intracerebroventricular infusion of the NOP receptor antagonist UFP-101 significantly decreased urine output. At the tissue level, high-NaCl treatment of rats significantly increased NOP receptor density, without altering endogenous N/OFQ peptide levels in whole hypothalamus (control, 712 +/- 35 fmol/mg vs. 8% NaCl, 883 +/- 49 fmol/mg, P < 0.05) and paraventricular nucleus. Furthermore, in the hypothalamus, basal GTPgammaS binding was increased without altering the sensitivity of N/OFQ-stimulated G protein coupling. In contrast, in whole medulla and the ventrolateral medulla (VLM), high-NaCl treatment decreased NOP receptor density (medulla: control, 1,473 +/- 131 fmol/mg vs. 8% NaCl, 327 +/- 31 fmol/mg, P < 0.05) and endogenous N/OFQ peptide levels (medulla: control, 35.3 +/- 2 fmol/mg vs. 8% NaCl, 11.9 +/- 3 fmol/mg, P < 0.05), while increasing the sensitivity of G protein signaling pathways to N/OFQ stimulation. Together, these findings suggest that during a chronic high-salt intake, regional changes in the activity of the N/OFQ-NOP system in the brain may contribute to the tonic regulation of cardiovascular function and urine output and to the altered physiological responses to exogenous central N/OFQ.[Abstract] [Full Text] [Related] [New Search]