These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. Author: Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA, Shellman YG. Journal: J Invest Dermatol; 2009 Apr; 129(4):964-71. PubMed ID: 18987671. Abstract: The Bcl-2 family is important in modulating sensitivity to anticancer drugs in many cancers, including melanomas. The BH3 mimetic ABT-737 is a potent small molecule inhibitor of the anti-apoptotic proteins Bcl-2/Bcl-X(L)/Bcl-w. In this report, we examined whether ABT-737 is effective in killing melanoma cells in combination with the proteasome inhibitor MG-132, and further evaluated the mechanisms of action. Viability, morphological, and Annexin V apoptosis assays showed that ABT-737 alone exhibited little cytotoxicity, yet it displayed strong synergistic lethality when combined with MG-132. In addition, the detection of Bax/Bak activation indicated that the combination treatment synergistically induced mitochondria-mediated apoptosis. Furthermore, mechanistic analysis revealed that this combination treatment induced expression of the pro-apoptotic protein Noxa- and caspase-dependent degradation of the anti-apoptotic protein, Mcl-1. Finally, siRNA-mediated inhibition of Mcl-1 expression significantly increased sensitivity to ABT-737 in these cells, and knocking down Noxa expression protected the cells from cytotoxicity induced by the combination treatment. These findings demonstrate that ABT-737 combined with MG-132 synergistically induced Noxa-dependent mitochondrial-mediated apoptosis. In summary, this study indicates promising therapeutic potential of targeting anti-apoptotic Bcl-2 family members in treating melanoma, and it validates rational molecular approaches that target anti-apoptotic defenses when developing cancer treatments.[Abstract] [Full Text] [Related] [New Search]