These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Author: Mawatari M, Okamura K, Matsuda T, Hamanaka R, Mizoguchi H, Higashio K, Kohno K, Kuwano M. Journal: Exp Cell Res; 1991 Feb; 192(2):574-80. PubMed ID: 1899074. Abstract: Epidermal growth factor (EGF) induces tubular formation of cultured human microvascular endothelial (HME) cells in the gel matrix containing collagen, and tumor necrosis factor (TNF) disrupts the tubular formation (Mawatari et al. (1989) J. Immunol. 143, 1619-1627). Here we studied the effects of EGF and TNF on endothelial cell migration and on the production of proteases. Confluent HME cells, when wounded with a razor blade, moved into the denuded space. This migration was stimulated by EGF and inhibited by TNF in this assay and in the Boyden chamber assay. Antibody against tissue-type plasminogen activator (t-PA) inhibited the EGF-stimulated cell migration in both assays by approximately 70%, but antibody against urokinase-type plasminogen activator (u-PA) could not inhibit its migration. Quantitative immunoreactive assays showed an approximately three- to fourfold increase of t-PA at 6 to 12 h after EGF addition, and TNF inhibited the production of t-PA by 50%. Northern blot analysis showed increased expression of t-PA mRNA by EGF alone in a time- and dose-dependent manner, whereas TNF alone inhibited its expression in a time- and dose-dependent manner. Northern blot analysis showed a significant increase of plasminogen activator inhibitor-1 (PAI-1) mRNA when EGF or TNF was present. Stimulation by EGF of cell migration of HME cells and its inhibition by TNF appear to be closely correlated with the cellular modulation of t-PA and PAI-1 activities.[Abstract] [Full Text] [Related] [New Search]