These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alternative suppression of transcription from two desaturase genes is the key for species-specific sex pheromone biosynthesis in two Ostrinia moths. Author: Sakai R, Fukuzawa M, Nakano R, Tatsuki S, Ishikawa Y. Journal: Insect Biochem Mol Biol; 2009 Jan; 39(1):62-7. PubMed ID: 18992816. Abstract: Crossing of two Ostrinia moths that use different positional isomers as sex pheromone components revealed that species-specific pheromone is produced through alternative suppression of two pheromone gland-specific desaturases at the gene transcription level. The sex pheromone of Ostrinia scapulalis (the adzuki bean borer) is a blend of (Z)-11- and (E)-11-tetradecenyl acetates (Z/E11-14:OAc), whereas that of Ostrinia furnacalis (the Asian corn borer) is a blend of (Z)-12- and (E)-12-tetradecenyl acetates (Z/E12-14:OAc). Delta11-Desaturase is known to be involved in the biosynthesis of Z/E11-14:OAc, and Delta14-desaturase, in that of Z/E12-14:OAc. The F1 hybrid between O. scapulalis and O. furnacalis produced both parents' sex pheromone components (Z/E11-14:OAc and Z/E12-14:OAc). Although the two species have both Delta11- and Delta14-desaturase genes, transcription from the Delta14-desaturase gene was strongly suppressed in O. scapulalis, as was transcription from the Delta11-desaturase gene in O. furnacalis. Meanwhile, both genes were transcribed into mRNA in F1. The production/non-production of Z/E11-14:OAc and Z/E12-14:OAc in F1, F2, and backcross progenies could be explained by an autosomal locus that suppresses transcription from either the Delta11-desaturase or Delta14-desaturase gene. Based on the findings, the evolution of sex pheromone biosynthesis in O. scapulalis and O. furnacalis is discussed.[Abstract] [Full Text] [Related] [New Search]