These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of dietary zilpaterol hydrochloride on feedlot performance and carcass characteristics of beef steers fed with and without monensin and tylosin.
    Author: Montgomery JL, Krehbiel CR, Cranston JJ, Yates DA, Hutcheson JP, Nichols WT, Streeter MN, Swingle RS, Montgomery TH.
    Journal: J Anim Sci; 2009 Mar; 87(3):1013-23. PubMed ID: 18997069.
    Abstract:
    A feedlot experiment was conducted under commercial conditions in the Texas Panhandle using 3,757 feedlot steers (average of 94 steers/pen) to evaluate the effects of feeding zilpaterol hydrochloride with or without monensin and tylosin on feedlot performance and carcass characteristics. The experiment was conducted using a randomized complete block design. Treatments were arranged as a 2 (no zilpaterol vs. zilpaterol) x 2 (monensin and tylosin withdrawn vs. monensin and tylosin fed during the final 35 d on feed) factorial. Steers were fed for a total of 161 to 167 d, and treatments were administered during the final 35 d that cattle were on feed. When included in the diet, zilpaterol, monensin, and tylosin were supplemented at 8.3, 33.1, and 12.2 mg/kg (DM basis), respectively. Zilpaterol was included in the diet for 30 d at the end of the finishing period and withdrawn from the diet for the last 5 or 6 d cattle were on feed. Cattle were harvested and carcass data collected. There were no zilpaterol x monensin/tylosin interactions (P >or= 0.12) for ADG or G:F. Feeding zilpaterol increased ADG (P < 0.001) by 0.20 kg and G:F (P < 0.001) by 0.029 kg/kg during the last 35 d on feed. Likewise, when feedlot variables were measured throughout the entire 161- to 167-d feeding trial, ADG (3.4%; P < 0.001) and G:F (3.9%; P < 0.001) were increased. Feeding zilpaterol increased (P < 0.001) dressing percent and HCW and decreased (P < 0.001) total liver abscess rate compared with controls. In addition, zilpaterol increased (P < 0.001) LM area by an average of 8.0 cm(2). There was a zilpaterol x monensin/tylosin interaction (P = 0.03) for marbling score. Zilpaterol decreased (P < 0.001) marbling score regardless of monensin and tylosin treatment, although withdrawal of monensin and tylosin for 35 d decreased marbling to a greater extent (31 vs. 17 degrees). Zilpaterol decreased (i.e., improved; P < 0.001) calculated yield grade regardless of monensin and tylosin treatment, but feeding zilpaterol in combination with the withdrawal of monensin and tylosin for 35 d decreased calculated yield grade to a greater extent (0.49 vs. 0.29) compared with the zilpaterol, monensin, and tylosin combination treatment (zilpaterol x monensin/tylosin interaction, P = 0.03). Results suggest that monensin and tylosin can be withdrawn from the diet during the zilpaterol feeding period (final 35 d on feed) with minimal effect on animal performance, although feeding zilpaterol in combination with monensin and tylosin seemed to moderate effects on carcass quality.
    [Abstract] [Full Text] [Related] [New Search]