These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spontaneous particle-hole symmetry breaking in the nu=5/2 fractional quantum Hall effect.
    Author: Peterson MR, Park K, Das Sarma S.
    Journal: Phys Rev Lett; 2008 Oct 10; 101(15):156803. PubMed ID: 18999624.
    Abstract:
    The essence of the nu=5/2 fractional quantum Hall effect is believed to be captured by the Moore-Read Pfaffian (or anti-Pfaffian) description. However, a mystery regarding the formation of the Pfaffian state is the role of the three-body interaction Hamiltonian H3 that produces it as an exact ground state and the concomitant particle-hole symmetry breaking. We show that a two-body interaction Hamiltonian H2 constructed via particle-hole symmetrization of H3 produces a ground state nearly exactly approximating the Pfaffian and anti-Pfaffian states, respectively, in the spherical geometry. Importantly, the ground state energy of H2 exhibits a "Mexican-hat" structure as a function of particle number in the vicinity of half filling for a given flux indicating spontaneous particle-hole symmetry breaking. This signature is absent for the second Landau level Coulomb interaction at 5/2.
    [Abstract] [Full Text] [Related] [New Search]