These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine.
    Author: Nishiyama N, Nakagishi Y, Morimoto Y, Lai PS, Miyazaki K, Urano K, Horie S, Kumagai M, Fukushima S, Cheng Y, Jang WD, Kikuchi M, Kataoka K.
    Journal: J Control Release; 2009 Feb 10; 133(3):245-51. PubMed ID: 19000725.
    Abstract:
    Photodynamic therapy (PDT) is a promising method for the localized treatment of solid tumors. In order to enhance the efficacy of PDT, we have recently developed a novel class of photosensitizer formulation, i.e., the dendrimer phthalocyanine (DPc)-encapsulated polymeric micelle (DPc/m). The DPc/m induced efficient and unprecedentedly rapid cell death accompanied by characteristic morphological changes such as blebbing of cell membranes, when the cells were photoirradiated using a low power halogen lamp or a high power diode laser. The fluorescent microscopic observation using organelle-specific dyes demonstrated that DPc/m might accumulate in the endo-/lysosomes; however, upon photoirradiation, DPc/m might be promptly released into the cytoplasm and photodamage the mitochondria, which may account for the enhanced photocytotoxicity of DPc/m. This study also demonstrated that DPc/m showed significantly higher in vivo PDT efficacy than clinically used Photofrin (polyhematoporphyrin esters, PHE) in mice bearing human lung adenocarcinoma A549 cells. Furthermore, the DPc/m-treated mice did not show skin phototoxiciy, which was apparently observed for the PHE-treated mice, under the tested conditions. These results strongly suggest the usefulness of DPc/m in clinical PDT.
    [Abstract] [Full Text] [Related] [New Search]