These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway.
    Author: Lee ST, Wu TT, Yu PY, Chen RM.
    Journal: Br J Anaesth; 2009 Jan; 102(1):80-9. PubMed ID: 19001360.
    Abstract:
    BACKGROUND: Ketamine is widely used as an i.v. anaesthetic agent and as a drug of abuse. Hepatocytes contribute to the metabolism of endogenous and exogenous substances. This study evaluated the toxic effects of S-(+)-ketamine and possible mechanisms using human hepatoma HepG2 cells as the experimental model. METHODS: HepG2 cells were exposed to S-(+)-ketamine. Cell viability and the release of lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GPT) were measured to determine the toxicity of S-(+)-ketamine to HepG2 cells. Cell morphology, DNA fragmentation, and apoptotic cells were analysed to evaluate the mechanism of S-(+)-ketamine-induced cell death. Amounts of Bax, an apoptotic protein, and cytochrome c in the cytoplasm or mitochondria were quantified by immunoblotting. Cellular adenosine triphosphate levels were analysed using a bioluminescence assay. Caspases-3, -9, and -6 were measured fluorometrically. RESULTS: Exposure of HepG2 cells to S-(+)-ketamine increased the release of LDH and GPT, but decreased cell viability (all P<0.01). S-(+)-Ketamine time-dependently caused shrinkage of HepG2 cells. Exposure to S-(+)-ketamine led to significant DNA fragmentation and cell apoptosis (P=0.003 and 0.002). S-(+)-Ketamine increased translocation of Bax from the cytoplasm to mitochondria, but decreased the mitochondrial membrane potential and cellular adenosine triphosphate levels (all P<0.01). Sequentially, cytosolic cytochrome c levels and activities of caspases-9, -3, and -6 were augmented after S-(+)-ketamine administration (all P<0.001). Z-VEID-FMK, an inhibitor of caspase-6, alleviated the S-(+)-ketamine-induced augmentation of caspase-6 activity, DNA fragmentation, and cell apoptosis (all P<0.001). CONCLUSIONS: This study shows that S-(+)-ketamine can induce apoptotic insults to human HepG2 cells via a Bax-mitochondria-caspase protease pathway. Thus, we suggest that S-(+)-ketamine at a clinically relevant or an abused concentration may induce liver dysfunction possibly due to its toxicity to hepatocytes.
    [Abstract] [Full Text] [Related] [New Search]