These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA.
    Author: Setlow B, Hand AR, Setlow P.
    Journal: J Bacteriol; 1991 Mar; 173(5):1642-53. PubMed ID: 1900278.
    Abstract:
    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores.
    [Abstract] [Full Text] [Related] [New Search]