These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions between nitroglycerin and endothelium in vascular smooth muscle relaxation.
    Author: Dinerman JL, Lawson DL, Mehta JL.
    Journal: Am J Physiol; 1991 Mar; 260(3 Pt 2):H698-701. PubMed ID: 1900391.
    Abstract:
    To evaluate the role of endothelium in nitroglycerin (NTG)-mediated vascular relaxation, epinephrine-contracted rat thoracic aortic segments with and without intact endothelium were exposed to NTG (10(-10) to 10(-5) M). Aortic segments with intact (endo+, n = 15) and denuded endothelium (endo-, n = 9) exhibited typical NTG-induced relaxation. However, the mean effective concentration of NTG was lower for endo- than for endo+ segments (P less than 0.001). To determine if this phenomenon related to nitric oxide (NO) generation by endothelium, six endo+ segments were treated with NG-monomethyl-L-arginine (L-NMMA), an inhibitor of NO production. These endo+ segments exhibited greater (P less than 0.001) relaxation in response to NTG than the untreated endo+ segments. Oxyhemoglobin, an inhibitor of guanylate cyclase activation, greatly diminished NTG-mediated relaxation of all aortic segments. To determine if the enhanced NTG-mediated relaxation of endo- segments was unique to the guanosine 3',5'-cyclic monophosphate-dependent vasodilator NTG, other endo+ and endo- segments were exposed to adenosine 3',5'-cyclic monophosphate-dependent vasodilator papaverine (10(-8) to 10(-4) M), and no difference in EC50 was noted between endo+ and endo- segments. Thus endothelium attenuates NTG-mediated vasorelaxation, and this attenuation is abolished by inhibition of endothelial NO production with L-NMMA. These observations indicate that endothelium is a dynamic modulator of vascular smooth muscle relaxant effects of NTG. This modulation appears to result from a competitive interaction between endothelial NO and NTG.
    [Abstract] [Full Text] [Related] [New Search]