These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Use of 3H and 14C doubly labeled glucose and amino acids in the study of hormonal regulation of gluconeogenesis in rats. Author: Dunn A, Chenoweth M, Bever K. Journal: Fed Proc; 1977 Feb; 36(2):245-52. PubMed ID: 190046. Abstract: Double isotope procedures (3H and 14C) were used in vivo to investigate a) slow long-term gluconeogenic actions of adrenal glucocorticoids, and b) rapid stimulation of gluconeogenesis by glucagon. [U-14C,6-3H]Glucose was administered to normal and adrenalectomized rats. No effect was observed on the [6-3H]glucose half-life suggesting the dicarboxylic acid shuttle is unaffected by adrenalectomy; the Cori cycle is also not influenced. Loads of [14C]aspartate, [14C]glutamate, or [14C]alanine were given to normal and adrenalectomized rats. Simultaneously, in vivo transaminase activity was studied by measuring the appearance of 3H2O in body water after administration of [2-3H]aspartate, [2-3H]glutamate, or [2-3H]alanine, Adrenalectomy has no influence on the incorporation of glutamate or aspartate into glucose or on their in vivo transaminases. Diminution of incorporation of [14C]alanine into glucose and alanine transaminase activities occurs only when rats are given unphysiological loads. These studies support the contention that glucocorticoid rate-limiting actions occur in extrahepatic tissues to produce an increased flow of glucose precursors to the liver. [U-14C,3-3H]Glucose was used to investigate the effect of glucagon on the hepatic fructose-6-phosphate (F-6-P) cycle. Glucagon administration resulted in a rapid drop in the 3H/14C ratio of circulating glucose, suggesting an increase in F-6-P recycling caused by activation of FDPase with little or no decrease in phosphofructokinase. Such a change would direct substrate flux toward gluconeogenesis.[Abstract] [Full Text] [Related] [New Search]