These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MDR quinone oxidoreductases: the human and yeast zeta-crystallins.
    Author: Porté S, Crosas E, Yakovtseva E, Biosca JA, Farrés J, Fernández MR, Parés X.
    Journal: Chem Biol Interact; 2009 Mar 16; 178(1-3):288-94. PubMed ID: 19007762.
    Abstract:
    The medium-chain dehydrogenase/reductase (MDR) superfamily can be divided into Zn-containing and Zn-lacking proteins. Zn-containing MDRs are generally well-known enzymes, mostly acting as dehydrogenases. The non-Zn MDR are much less studied, and classified in several families of NADP(H)-dependent reductases, including quinone oxidoreductases (QOR). zeta-Crystallins are the best studied group of QOR, have a structural function in the lens of several mammals, exhibit ortho-quinone reductase activity, and bind to specific adenine-uracil-rich elements (ARE) in RNA. In the present work, we have further characterized human zeta-crystallin and Saccharomyces cerevisiae Zta1p, the only QOR in yeast. Subcellular localization using a fluorescent protein tag indicates that zeta-crystallin is distributed in the cytoplasm but not in nucleus. The protein may also be present in mitochondria. Zta1p localizes in both cytoplasm and nucleus. NADPH, but not NADH, competitively prevents binding of zeta-crystallin to RNA, suggesting that the cofactor-binding site is involved in RNA binding. Interference of NADPH on Zta1p binding to RNA is much lower, consistent with a weaker binding of NADPH to the yeast enzyme. Disruption of the yeast ZTA1 gene does not affect cell growth under standard conditions but makes yeast more sensitive to oxidative stress agents. Sequence alignments, phylogenetic tree analysis and kinetic properties reveal a close relationship between zeta-crystallin and Zta1p. Amino acid conservation, between the substrate-binding sites of the two proteins and that of an E. coli QOR, indicates that zeta-crystallins maintained their kinetic function throughout evolution. Quinones are toxic compounds and a relevant step in their detoxification is reduction to their corresponding hydroquinones. Many enzymes of several superfamilies can reduce quinones, including NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase), aldo-keto reductases and short-chain dehydrogenases/reductases. In this context, the physiological role of zeta-crystallins is discussed.
    [Abstract] [Full Text] [Related] [New Search]