These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: sigma54-promoter discrimination and regulation by ppGpp and DksA. Author: Bernardo LM, Johansson LU, Skärfstad E, Shingler V. Journal: J Biol Chem; 2009 Jan 09; 284(2):828-38. PubMed ID: 19008221. Abstract: The sigma(54)-factor controls expression of a variety of genes in response to environmental cues. Much previous work has implicated the nucleotide alarmone ppGpp and its co-factor DksA in control of sigma(54)-dependent transcription in the gut commensal Escherichia coli, which has evolved to live under very different environmental conditions than Pseudomonas putida. Here we compared ppGpp/DksA mediated control of sigma(54)-dependent transcription in these two organisms. Our in vivo experiments employed P. putida mutants and manipulations of factors implicated in ppGpp/DksA mediated control of sigma(54)-dependent transcription in combination with a series of sigma(54)-promoters with graded affinities for sigma(54)-RNA polymerase. For in vitro analysis we used a P. putida-based reconstituted sigma(54)-transcription assay system in conjunction with DNA-binding plasmon resonance analysis of native and heterologous sigma(54)-RNA polymerase holoenzymes. In comparison with E. coli, ppGpp/DksA responsive sigma(54)-transcription in the environmentally adaptable P. putida was found to be more robust under low energy conditions that occur upon nutrient depletion. The mechanism behind this difference can be traced to reduced promoter discrimination of low affinity sigma(54)-promoters that is conferred by the strong DNA binding properties of the P. putida sigma(54)-RNA polymerase holoenzyme.[Abstract] [Full Text] [Related] [New Search]