These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunocytochemical visualization of DNA adducts in mouse tissues and human white blood cells following treatment with benzo[a]pyrene or its diol epoxide. A quantitative approach. Author: van Schooten FJ, Hillebrand MJ, Scherer E, den Engelse L, Kriek E. Journal: Carcinogenesis; 1991 Mar; 12(3):427-33. PubMed ID: 1901249. Abstract: The formation and stability of benzo[a]pyrene DNA adducts were studied in tissues of BALB/c mice exposed to benzo[a]pyrene (B[a]P). The DNA adducts were visualized with an immunocytochemical peroxidase staining technique using an antiserum specific for the major B[a]P-derived adduct in DNA [(+/-)trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE-N2-dG)]. The nuclear staining density was measured by microdensitometry. When mice were treated with an increasing dose of B[a]P the nuclear staining increased in the tissues studied (lung, heart and kidney). A linear relationship was found between the immunocytochemical nuclear staining signal and the actual DNA adduct level in the lung as measured by 32P-postlabeling. Maximum adduct formation was found 5 days after a single i.p. injection of B[a]P. Adduct levels decreased gradually after 7 days, but even after 61 days a slight specific staining was still present, suggesting that not all adducts had disappeared at that time. As judged from the disappearance of [3H]thymidine from prelabeled DNA the loss of adducts from the lung was not a result of DNA repair but one of cell turnover. In human white blood cells B[a]P-derived adducts could be detected after in vitro incubation with the reactive metabolite of B[a]P (BPDE). Dose-response studies demonstrated a positive relationship between BPDE-DNA adduct formation, the immunocytochemical staining signal and the BPDE concentration in the culture medium.[Abstract] [Full Text] [Related] [New Search]