These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Benefits of applying combined diffuse reflectance FTIR spectroscopy and principal component analysis for the study of blue tempera historical painting.
    Author: Navas N, Romero-Pastor J, Manzano E, Cardell C.
    Journal: Anal Chim Acta; 2008 Dec 23; 630(2):141-9. PubMed ID: 19012825.
    Abstract:
    This paper explores the application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to the examination of historic blue pigments and blue tempera paintings commonly found on works of art. The discussion is mainly focused on the practical benefits of using this technique joined to principal component analysis (PCA), a powerful multivariate analysis tool. Thanks to the study of several replica samples that contain either pure blue pigments (azurite, lapis lazuli and smalt), or pure binder (rabbit glue) and mixtures of each of the pigments with the binder (tempera samples), different aspects of these benefits are highlighted. Comparative results of direct spectra and multivariate analysis using transmittance-Fourier transform infrared spectroscopy (T-FTIR) are discussed throughout this study. Results showed an excellent ability of PCA on DRIFT spectra for discriminating replica samples according to differing composition. Several IR regions were tested with this aim; the fingerprint IR region exhibited the best ability for successfully clustering the samples. The presence of the binder was also discriminated. Only using this approach it was possible to completely separate all the studied replica samples. This demonstrates the potential benefits of this approach in identifying historical pigments and binders for conservation and restoration purposes in the field of Cultural Heritage.
    [Abstract] [Full Text] [Related] [New Search]