These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Author: Jang SM, Yee ST, Choi J, Choi MS, Do GM, Jeon SM, Yeo J, Kim MJ, Seo KI, Lee MK. Journal: Int Immunopharmacol; 2009 Jan; 9(1):113-9. PubMed ID: 19013541. Abstract: This study investigated the effects of ursolic acid on immunoregulation and pancreatic beta-cell function in type 1 diabetes fed a high-fat diet for 4 weeks. Male mice were divided into non-diabetic, diabetic control, and diabetic-ursolic acid (0.05%, w/w) groups, which were fed a high-fat (37% calories from fat). Diabetes was induced by injection of streptozotocin (200 mg/kg B.W., i.p.). Ursolic acid significantly improved blood glucose levels, glucose intolerance, and insulin sensitivity compared to the diabetic group. The plasma insulin and C-peptide concentrations were significantly higher in the diabetic-ursolic acid group than in the diabetic group. Ursolic acid significantly elevated the insulin levels with preservation of insulin staining of beta-cells in the pancreas. In splenocytes, concanavalin (Con) A-induced T-cell proliferation was significantly higher in the diabetic-ursolic acid group compared to the diabetic group, but liposaccharide (LPS)-induced B-cell proliferation did not differ between groups. Ursolic acid enhanced IL-2 and IFN-gamma production in response to Con A stimulation, whereas it inhibited TNF-alpha production in response to LPS stimulation. In this study, neither streptozotocin nor ursolic acid had effects on lymphocyte subsets. These results indicate that ursolic acid exhibits potential anti-diabetic and immunomodulatory properties by increasing insulin levels with preservation of pancreatic beta-cells and modulating blood glucose levels, T-cell proliferation and cytokines production by lymphocytes in type 1 diabetic mice fed a high-fat diet.[Abstract] [Full Text] [Related] [New Search]