These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes.
    Author: Milillo SR, Wiedmann M.
    Journal: Foodborne Pathog Dis; 2009; 6(1):57-70. PubMed ID: 19014275.
    Abstract:
    Listeria monocytogenes strains are divided into at least three lineages, which seem to differ in virulence. Internalins are surface-attached or secreted proteins that encode leucine-rich repeats, and L. monocytogenes encodes species-specific as well as lineage-specific internalin and internalin-like genes. Internalins A and B have previously been shown to be critical for L. monocytogenes host cell invasion. Transcription of selected internalins is regulated by the virulence gene regulator PrfA and/or the stress-responsive alternative sigma factor sigma(B). We hypothesized that lineage-specific internalin-like genes may contribute to differential virulence and niche adaptation of the L. monocytogenes lineages. Initial quantitative real time, reverse transcriptase PCR (RT-PCR) showed that the six selected lineage-specific internalin-like genes were transcribed in cells grown at 16 degrees and 37 degrees C. Lineage-specific internalin-like gene, lineage II (lsiIIX) showed significantly higher transcript levels in log-phase cells grown at 37 degrees C as compared to 16 degrees C. The gene lsiIA was preceded by a putative sigma(B)-dependent promoter and showed sigma(B)-dependent transcription. None of the null mutants in lineage-specific internalin-like genes differed from their respective parent strain in ability to invade either human intestinal epithelial or hepatocyte-like cell lines. All three mutants in lineage I-specific internalin-like genes exhibited the same growth condition-dependent invasion phenotype as their parent strain ( approximately 1.5 log higher invasion efficiency when grown at 30 degrees C without aeration versus 37 degrees C with aeration). Despite structural similarities to internalins with known roles in host cell attachment and invasion, none of the six lineage-specific internalin-like genes characterized here appear to contribute to invasion. Combined with the observation that some nonpathogenic Listeria species also carry internalin genes, our findings suggest a broad role of Listeria internalins, not limited to attachment and invasion of human cells. Due to the wide host range of L. monocytogenes and the fact that transcription of internalin-like genes can differ considerably depending on growth condition, elucidating the function of different internalins and internalin-like genes will remain a challenge.
    [Abstract] [Full Text] [Related] [New Search]