These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses.
    Author: Taub DR, Wang X.
    Journal: J Integr Plant Biol; 2008 Nov; 50(11):1365-74. PubMed ID: 19017124.
    Abstract:
    Plants grown under elevated atmospheric [CO2] typically have decreased tissue concentrations of N compared with plants grown under current ambient [CO2]. The physiological mechanisms responsible for this phenomenon have not been definitely established, although a considerable number of hypotheses have been advanced to account for it. In this review we discuss and critically evaluate these hypotheses. One contributing factor to the decreases in tissue N concentrations clearly is dilution of N by increased photosynthetic assimilation of C. In addition, studies on intact plants show strong evidence for a general decrease in the specific uptake rates (uptake per unit mass or length of root) of N by roots under elevated CO2. This decreased root uptake appears likely to be the result both of decreased N demand by shoots and of decreased ability of the soil-root system to supply N. The best-supported mechanism for decreased N supply is a decrease in transpiration-driven mass flow of N in soils due to decreased stomatal conductance at elevated CO2, although some evidence suggests that altered root system architecture may also play a role. There is also limited evidence suggesting that under elevated CO2, plants may exhibit increased rates of N loss through volatilization and/or root exudation, further contributing to lowering tissue N concentrations.
    [Abstract] [Full Text] [Related] [New Search]