These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bile acid-induced apoptosis in hepatocytes is caspase-6-dependent.
    Author: Rust C, Wild N, Bernt C, Vennegeerts T, Wimmer R, Beuers U.
    Journal: J Biol Chem; 2009 Jan 30; 284(5):2908-2916. PubMed ID: 19017654.
    Abstract:
    Apoptosis induced by hydrophobic bile acids is thought to contribute to liver injury during cholestasis. Caspase-6 is an executioner caspase that also appears to have regulatory functions in hematopoetic cell lines. We aimed to elucidate the role of caspase-6 in bile acid-induced apoptosis. The major human hydrophobic bile acid, glycochenodeoxycholic acid (GCDCA, 75 micromol/liter), rapidly induced caspase-6 cleavage in HepG2-Ntcp human hepatoma cells. GCDCA-induced, but not tumor necrosis factor alpha- or etoposide-induced activation of effector caspases-3 and -7 was significantly reduced by 50% in caspase-6-deficient HepG2-Ntcp cells as well as in primary rat hepatocytes pretreated with a caspase-6 inhibitor. Inhibition of caspase-9 reduced GCDCA-induced activation of caspase-6, whereas inhibition of caspase-6 reduced activation of caspase-8 placing caspase-6 between caspase-9 and caspase-8. GCDCA also induced apoptosis in Fas-deficient Hep3B-Ntcp and HuH7-Ntcp hepatoma cells. In addition, GCDCA-induced apoptosis was reduced by 50% in FADD-deficient HepG2-Ntcp cells, whereas apoptosis induced by tumor necrosis factor alpha was reduced by 90%. Collectively, these observations suggest that GCDCA can induce hepatocyte apoptosis in the absence of death receptor signaling, presumably by a compensatory mitochondrial pathway. In conclusion, caspase-6 appears to play an important regulatory role in the promotion of bile acid-induced apoptosis as part of a feedback loop.
    [Abstract] [Full Text] [Related] [New Search]