These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrastructure of the ganglion cells of the terminal nerve in the dwarf gourami (Colisa lalia).
    Author: Oka Y, Ichikawa M.
    Journal: J Comp Neurol; 1991 Feb 08; 304(2):161-71. PubMed ID: 1901871.
    Abstract:
    In our previous light microscopic studies (Oka et al., Brain Res. 367: 341-345, '86; Oka and Ichikawa, J. Comp. Neurol. 300: 511-522, '90), we reported that there are at least two types of terminal nerve (TN) cells based on cell size and immunoreactivity: type I cells had large cell bodies, while type II cells had smaller cell bodies. Type I TN cells were immunoreactive to gonadotropin-releasing hormone (GnRH) and may be the major source of GnRH-immunoreactive fibers that are widely distributed throughout the brain. Type II TN cells, on the other hand, were not immunoreactive to GnRH. In the present paper, we examined the cytology and synaptology of these two types of TN cells with electron microscopy. Type I TN cell bodies were found to have morphological characteristics similar to those of other peptide-synthesizing neurons and are likely to be actively synthesizing GnRH. The frequent occurrence of coated vesicles close to the plasma membrane of the cell body was suggestive of membrane retrieval following exocytosis of the vesicular contents from the cell surface. Neighboring TN cells were either in direct juxtaposition with one another or made specialized "glomeruloid" cell-to-cell contacts; these specializations may be relevant for nonsynaptic intercellular communications among the TN cells. Within these glomeruloid complexes, the somatic processes of TN cells received inputs from two types of synaptic terminals: one containing only spherical synaptic vesicles and another containing a small number of dense-cored vesicles in addition to the spherical synaptic vesicles. Axosomatic synapses were rare on type I TN cell bodies. In contrast, type II TN cell bodies had morphological characteristics similar to those of neurons in other brain regions. These receive axosomatic inputs from synaptic terminals containing only spherical synaptic vesicles and those with a small number of dense-cored vesicles in addition to the spherical synaptic vesicles. Thus, each type of TN cell has unique fine structural characteristics which may correlate to their different functional roles.
    [Abstract] [Full Text] [Related] [New Search]