These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microbial transformation of hydroxy metabolites of 1-oxohexyl derivatives of theobromine by Cunninghamella echinulata NRRL 1384. Author: Pekala E, Kochan M, Carnell AJ. Journal: Lett Appl Microbiol; 2009 Jan; 48(1):19-24. PubMed ID: 19018970. Abstract: AIM: The biotransformation of pentoxifylline (PTX), propentofylline (PPT) and their racemic hydroxy metabolites ((+/-)-OHPTX and (+/-)-OHPPT) by using the fungus Cunninghamella echinulata NRRL 1384. METHODS AND RESULTS: A fungus Cunninghamella echinulata NRRL 1384 was used to catalyse the (S)-selective oxidation of the racemic hydroxy metabolites: (+/-)-OHPTX and (+/-)-OHPPT and for reduction of PTX and PPT. The first oxidation step appears to be selective and relatively fast while the second reduction step is slower and more selective with PTX. Modifications involving supplementing the bioconversion with glucose give yields and enantiomeric excess (ee) values similar to those obtained without glucose. CONCLUSIONS: The bioconversion of (+/-)-OHPTX gave an (R)-enantiomer (LSF-lisofylline) with a higher enantiopurity (maximum approximately 93% ee) compared to the bioconversion of (+/-)-OHPPT, when the maximum ee value for (R)-OHPPT was recorded at 83%. SIGNIFICANCE AND IMPACT OF THE STUDY: The conversion of (+/-)-OHPTX and (+/-)-OHPPT using Cunninghamella echinulata can be recognized as a process, which may be recommended as an alternative to the methods used to obtain (R)-OHPTX and (R)-OHPPT.[Abstract] [Full Text] [Related] [New Search]