These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alternative techniques for producing a quality surimi and kamaboko from common carp (Cyprinus carpio).
    Author: Jafarpour A, Gorczyca EM.
    Journal: J Food Sci; 2008 Nov; 73(9):E415-24. PubMed ID: 19021796.
    Abstract:
    The demand for surimi and kamaboko is increasing in the world at the same time as the supply of the fish traditionally used has declined. In an effort to increase the range and hence supply of fish used, factors increasing the quality of surimi and kamaboko from common carp were investigated. The best surimi and kamaboko characteristics were produced by a modified conventional method (MCM) rather than traditional method (TM), alkaline-aided method (AAM), and pH modified method (PMM). MCM processing used centrifugation instead of decanting and filtering to optimize dewatering and remove the sarcoplasmic proteins (Sp-P). The temperature sweep test, at the end of sol-gel transition stage (at 75 degrees C), showed significantly (P < 0.05) greater G' for the kamaboko from MCM than that from other methods tested. Furthermore, the greatest and the least gel strengths were obtained with MCM and TM kamaboko, respectively. The protein recovery was about 67%, 74%, 87%, and 92% for TM, AAM, MCM, and PMM, respectively. TM and MCM resulted in the removal of Sp-P as determined by SDS-PAGE. The superiority of MCM kamaboko gel characteristics was supported by scanning electron micrographs (SEM) of the gel, which showed a significantly (P < 0.05) greater number of polygonal structures than for the TM kamaboko, which had the fewest and largest polygonal structures. The pH-shifting methods improved the textural quality of the resultant kamaboko compared with TM. However, a simple modification (centrifugation compared with decanting) by MCM in the surimi process can further improve the quality of the surimi and kamaboko gels. Furthermore, because it removed Sp-P and still preserved gel strength, it suggests that Sp-P are not required for gel strength.
    [Abstract] [Full Text] [Related] [New Search]