These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. Author: Zeng Z, Wang J. Journal: IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1525-36. PubMed ID: 19022724. Abstract: This paper presents a design method for synthesizing associative memories based on discrete-time recurrent neural networks. The proposed procedure enables both hetero- and autoassociative memories to be synthesized with high storage capacity and assured global asymptotic stability. The stored patterns are retrieved by feeding probes via external inputs rather than initial conditions. As typical representatives, discrete-time cellular neural networks (CNNs) designed with space-invariant cloning templates are examined in detail. In particular, it is shown that procedure herein can determine the input matrix of any CNN based on a space-invariant cloning template which involves only a few design parameters. Two specific examples and many experimental results are included to demonstrate the characteristics and performance of the designed associative memories.[Abstract] [Full Text] [Related] [New Search]