These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Signaling mechanisms of sphingosine 1-phosphate-induced ERK1/2 activation in cultured feline esophageal smooth muscle cells.
    Author: Chung FY, Song HJ, Park SY, Jang HS, Kim DS, Sim SS, Sohn UD.
    Journal: Arch Pharm Res; 2008 Nov; 31(11):1437-45. PubMed ID: 19023540.
    Abstract:
    Sphingosine 1-phosphate (S1P) is a bioactive lipid, stored and released from activated platelets, macrophages, and other mammalian cells. We previously reported that S1P induces esophageal smooth muscle contraction in freshly isolated intact cells. Here, we measured S1P-induced ERK1/2 activation and upstream signaling in cultured feline esophageal smooth muscle cells. Activation of ERK1/2 by S1P peaked at 5 min, was sustained up to 30 min, and was blocked by PTX. In contrast, S1P did not activate p38 MAPK or JNK. PTX inhibited S1P-induced ERK1/2 activation. We then used phospholipase inhibitors, DEDA for PLA(2), U73122 for PLC, and rhoCMB for PLD, to determine that ERK1/2 activation was downstream of PLC activation. The PKC inhibitors, GF109203X and chelerythrine, also suppressed ERK1/2 activation. Whereas the PTK inhibitor, genistein, partially inhibited ERK1/2 activation, the EGFR tyrosine kinase inhibitor, tyrphostin 51, had no effect. Taken together, S1P-induced ERK1/2 activation in cultured ESMCs requires a PTX-sensitive G protein, stimulation of the PLC pathway, and subsequent activation of the PKC and PTK pathways.
    [Abstract] [Full Text] [Related] [New Search]