These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Versatile supramolecular pDNA vehicles via "click polymerization" of beta-cyclodextrin with oligoethyleneamines. Author: Srinivasachari S, Reineke TM. Journal: Biomaterials; 2009 Feb; 30(5):928-38. PubMed ID: 19027153. Abstract: Herein, we report the efficient synthesis of high molecular weight polymers (up to 331 kDa) that contain beta-cyclodextrin within the polymer backbone and the examination of these structures for pDNA delivery within cultured mammalian cells. Two series of polymers were synthesized, one with variation in oligoethyleneamine stoichiometry, Cd1(46), Cd2(44), Cd3(49), and Cd4(47) (1-4 oligoethyleneamines in the repeat unit, respectively and similar degree of polymerization, n(w)=44-49) and another with variation in polymer length (four ethyleneamines in the repeat unit), Cd4(27), Cd4(47), Cd4(93), and Cd4(200) [n(w)=27, 47, 93, 200] via the "click reaction". The two series of polymers revealed efficient pDNA binding and compaction through gel electrophoresis, dynamic light scattering, and transmission electron microscopy experiments. The DNase protection assay showed a decrease in pDNA degradation with an increase in the polymer amine stoichiometry, where polymer Cd3(49) and all of the Cd4 analogs completely protected pDNA for up to 8 h in serum. The cellular uptake and gene expression profiles were examined in HeLa cells, which similarly demonstrated that both the series of polymers had high pDNA delivery where, Cd3(49) and Cd4(93) had the most effective luciferase gene expression. In addition, the cell viability profiles were quite high with all of the structures.[Abstract] [Full Text] [Related] [New Search]