These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alkylaluminum-complexed zirconocene hydrides: identification of hydride-bridged species by NMR spectroscopy.
    Author: Baldwin SM, Bercaw JE, Brintzinger HH.
    Journal: J Am Chem Soc; 2008 Dec 24; 130(51):17423-33. PubMed ID: 19032092.
    Abstract:
    Reactions of unbridged zirconocene dichlorides, (R(n)C(5)H(5-n))(2)ZrCl(2) (n = 0, 1, or 2), with diisobutylaluminum hydride (HAl(i)Bu(2)) result in the formation of tetranuclear trihydride clusters of the type (R(n)C(5)H(5-n))(2)Zr(mu-H)(3)(Al(i)Bu(2))(3)(mu-Cl)(2), which contain three [Al(i)Bu(2)] units. Ring-bridged ansa-zirconocene dichlorides, Me(2)E(R(n)C(5)H(4-n))(2)ZrCl(2) with E = C or Si, on the other hand, are found to form binuclear dihydride complexes of the type Me(2)E(R(n)C(5)H(4-n))(2)Zr(Cl)(mu-H)(2)Al(i)Bu(2) with only one [Al(i)Bu(2)] unit. The dichotomy between unbridged and bridged zirconocene derivatives with regard to tetranuclear versus binuclear product formation is proposed to be connected to different degrees of rotational freedom of their C(5)-ring ligands. Alkylaluminum-complexed zirconocene dihydrides, previously observed in zirconocene-based precatalyst systems activated by methylalumoxane (MAO) upon addition of HAl(i)Bu(2) or Al(i)Bu(3), are proposed to be species of the type Me(2)Si(ind)(2)Zr(Me)(mu-H)(2)Al(i)Bu(2), stabilized by interaction of their terminal Me group with a Lewis acidic site of MAO.
    [Abstract] [Full Text] [Related] [New Search]