These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine.
    Author: Hayden PJ, Yang Y, Ward AJ, Dulik DM, McCann DJ, Stevens JL.
    Journal: Biochemistry; 1991 Jun 18; 30(24):5935-43. PubMed ID: 1904276.
    Abstract:
    19F NMR spectroscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N alpha-acetyl-N epsilon-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by 19F and 13C NMR spectroscopy and mass spectrometry. N alpha-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation was greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However N alpha-acetyllysine, at concentrations of greater than 100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Both stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated nephrotoxicity.
    [Abstract] [Full Text] [Related] [New Search]