These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Forelimb proportions and kinematics: how are small primates different from other small mammals?
    Author: Schmidt M.
    Journal: J Exp Biol; 2008 Dec; 211(Pt 24):3775-89. PubMed ID: 19043050.
    Abstract:
    The crouched limb posture of small mammals enables them to react to unexpected irregularities in the support. Small arboreal primates would benefit from these kinematics in their arboreal habitat but it has been demonstrated that primates display certain differences in forelimb kinematics to other mammals. The objective of this paper is to find out whether these changes in forelimb kinematics are related to changes in body size and limb proportions. As primates descended from small ancestors, a comparison between living small primates and other small mammals makes it possible to determine the polarity of character transformations for kinematic and morphometric features proposed to be unique to primates. Walking kinematics of mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys was investigated using cineradiography. Morphometry was conducted on a sample of 110 mammals comprising of primates, marsupials, rodents and carnivores. It has been shown that forelimb kinematics change with increasing body size in such a way that limb protraction increases but retraction decreases. Total forelimb excursion, therefore, is almost independent of body size. Kinematic changes are linked to changes in forelimb proportions towards greater asymmetry between scapula and radius. Due to the spatial restriction inherent in the diagonal footfall sequence of primates, forelimb excursion is influenced by the excursion of the elongated hind limb. Hindlimb geometry, however, is highly conserved, as has been previously shown. The initial changes in forelimb kinematics might, therefore, be explained as solutions to a constraint rather than as adaptations to the particular demands of arboreal locomotion.
    [Abstract] [Full Text] [Related] [New Search]